Digital Twins Definition Language

The Digital Twins Definition Language (DTDL) is a language for describing models and interfaces for IoT digital twins. github

Digital twins are models of entities in the physical environment such as shipping containers, rooms, factory floors, or logical entities that participate in IoT solutions. Using DTDL to describe a digital twin's capabilities enables the IoT solutions to leverage the semantics of the entity.

~

ALA-LAURINAHO, Riku, AUTIOSALO, Juuso, NIKANDER, Anna, MATTILA, Joel and TAMMI, Kari, 2020. Data link for the creation of digital twins. IEEE Access. Online. 2020. Vol. 8, p. 228675–228684. Available from: https://ieeexplore.ieee.org/abstract/document/9298755/ [Accessed 5 February 2024]. ATKINSON, Colin and KÜHNE, Thomas, 2021. Taming the complexity of digital twins. IEEE Software. Online. 2021. Vol. 39, no. 2, p. 27–32. Available from: https://ieeexplore.ieee.org/abstract/document/9618969/ [Accessed 5 February 2024]. AUTIOSALO, Juuso, SIEGEL, Joshua and TAMMI, Kari, 2021. Twinbase: Open-source server software for the digital twin web. IEEE Access. Online. 2021. Vol. 9, p. 140779–140798. Available from: https://ieeexplore.ieee.org/abstract/document/9568895/ [Accessed 5 February 2024]. BANKA, Kenichiro and UCHIHIRA, Naoshi, 2021. Dynamic capability in business ecosystem: how to obtain new capabilities from existing environment. In: 2021 IEEE Technology & Engineering Management Conference-Europe (TEMSCON-EUR). Online. IEEE. 2021. p. 1–6. Available from: https://ieeexplore.ieee.org/abstract/document/9488652/ [Accessed 5 February 2024]. BILEN, Tugçe, 2022. ISTANBUL TECHNICAL UNIVERSITY 击 GRADUATE SCHOOL. . Online. 2022. Available from: https://polen.itu.edu.tr/bitstreams/a51fca50-f579-4789-849b-ecbc95da5605/download [Accessed 5 February 2024]. BILEN, Tuğçe, AK, Elif, BAL, Bahadır and CANBERK, Berk, 2022. A Proof of Concept on Digital Twin-Controlled WiFi Core Network Selection for In-Flight Connectivity. IEEE Communications Standards Magazine. Online. 2022. Vol. 6, no. 3, p. 60–68. Available from: https://ieeexplore.ieee.org/abstract/document/9927253/ [Accessed 5 February 2024]. BOZKAYA, Elif, EREL-ÖZÇEVIK, Müge, BILEN, Tuğçe and ÖZÇEVIK, Yusuf, 2023. Proof of evaluation-based energy and delay aware computation offloading for digital twin edge network. Ad Hoc Networks. Online. 2023. Vol. 149, p. 103254. Available from: https://www.sciencedirect.com/science/article/pii/S1570870523001749 [Accessed 5 February 2024]. ÇAKIR, Lal Verda, HUSEYNOV, Khayal, AK, Elif and CANBERK, Berk, 2022. DTWN: Q-learning-based Transmit Power Control for Digital Twin WiFi Networks. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. Online. 8 June 2022. Vol. 9, no. 31, p. e5. DOI 10.4108/eetinis.v9i31.1059. [Accessed 5 February 2024]. Interference has always been the main threat to the performance of traditional WiFi networks and next-generation moving forward. The problem can be solved with transmit power control(TPC). However, to accomplish this, an information-gathering process is required. But this brings overhead concerns that decrease the throughput. Moreover, mitigation of interference relies on the selection of transmit powers. In other words, the control scheme should select the optimum configuration relative to other possibilities based on the total interference, and this requires an extensive search. Furthermore, bidirectional communication in real-time needs to exist to control the transmit powers based on the current situation. Based on these challenges, we propose a complete solution with Digital Twin WiFi Networks (DTWN). Contrarily to other studies, with the agent programs installed on the APs in the physical layer of this architecture, we enable information-gathering without causing overhead to the wireless medium. Additionally, we employ Q-learning-based TPC in the Brain Layer to find the best configuration given the current situation. Consequently, we accomplish real-time monitoring and management thanks to the digital twin. Then, we evaluate the performance of the proposed approach through total interference and throughput metrics over the increasing number of users. Furthermore, we show that the proposed DTWN model outperforms existing schemes. CAMERON, David B., OTTEN, Wilhelm, TEMMEN, Heiner, HOLE, Monica and TOLKSDORF, Gregor, 2024. DEXPI process: Standardizing interoperable information for process design and analysis. Computers & Chemical Engineering. Online. 2024. Vol. 182, p. 108564. Available from: https://www.sciencedirect.com/science/article/pii/S0098135423004349 [Accessed 5 February 2024]. CASSIMON, Thomas, DE HOOG, Jens, ANWAR, Ali, MERCELIS, Siegfried and HELLINCKX, Peter, 2021. Intelligent Data Sharing in Digital Twins: Positioning Paper. In: BAROLLI, Leonard, TAKIZAWA, Makoto, YOSHIHISA, Tomoki, AMATO, Flora and IKEDA, Makoto (eds.), Advances on P2P, Parallel, Grid, Cloud and Internet Computing. Online. Cham: Springer International Publishing. p. 282–290. Lecture Notes in Networks and Systems. ISBN 978-3-030-61104-0. [Accessed 5 February 2024]. CAVALIERI, Salvatore and GAMBADORO, Salvatore, 2023. Proposal of Mapping Digital Twins Definition Language to Open Platform Communications Unified Architecture. Sensors. Online. 2023. Vol. 23, no. 4, p. 2349. Available from: https://www.mdpi.com/1424-8220/23/4/2349 [Accessed 5 February 2024]. CONWELL JR, Wesley L., 2023. Conceptual Architecture for Digital Twin Implementation in a Smart City Framework. Online. PhD Thesis. The University of Alabama at Birmingham. Available from: https://search.proquest.com/openview/6a8b6f86ea838bfb88a9a1e059f1bf71/1?pq-origsite=gscholar&cbl=18750&diss=y [Accessed 5 February 2024]. CONWELL, Wesley and JOLOLIAN, Leon, [no date]. Digital Twin Integration for Smart-city Framework Development. Technology Interface International Journal. Online. P. 45. Available from: https://tiij.org/issues/issues/spring2023/X__TIIJ%20spring%202023%20v23%20n2.pdf#page=46 [Accessed 5 February 2024]. CORREIA, João António Gamboa, 2022. Representação Digital e Gestão de Equipamentos Numa Plataforma IIoT. . Online. 2022. Available from: https://repositorio-aberto.up.pt/bitstream/10216/143008/2/573070.pdf [Accessed 5 February 2024]. DALIBOR, Manuela, HEITHOFF, Malte, MICHAEL, Judith, NETZ, Lukas, PFEIFFER, Jérôme, RUMPE, Bernhard, VARGA, Simon and WORTMANN, Andreas, 2022. Generating customized low-code development platforms for digital twins. Journal of Computer Languages. Online. 2022. Vol. 70, p. 101117. Available from: https://www.sciencedirect.com/science/article/pii/S2590118422000235 [Accessed 5 February 2024]. DE LAS MORENAS, Javier, MOYA-FERNÁNDEZ, Francisco and LÓPEZ-GÓMEZ, Julio Alberto, 2023. The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines. Sensors. Online. 2023. Vol. 23, no. 5, p. 2649. Available from: https://www.mdpi.com/1424-8220/23/5/2649 [Accessed 5 February 2024]. DI GIROLAMO, ALBERTO, [no date]. INTEGRAZIONE DI DIGITAL TWINS E MIXED REALITY: UN CASO DI STUDIO. . Online. Available from: https://amslaurea.unibo.it/26759/1/Tesi_AlbertoDiGirolamo.pdf [Accessed 5 February 2024]. ELMAY, Feruz K., MADINE, Mohammad, SALAH, Khaled and JAYARAMAN, Raja, 2023. NFTs for Trusted Traceability and Management of Digital Twins for Shipping Containers. In: 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). Online. IEEE. 2023. p. 433–438. Available from: https://ieeexplore.ieee.org/abstract/document/10150331/ [Accessed 5 February 2024]. FERKO, Enxhi, BUCAIONI, Alessio, PELLICCIONE, Patrizio and BEHNAM, Moris, 2023. Analysing Interoperability in Digital Twin Software Architectures for Manufacturing. In: TEKINERDOGAN, Bedir, TRUBIANI, Catia, TIBERMACINE, Chouki, SCANDURRA, Patrizia and CUESTA, Carlos E. (eds.), Software Architecture. Online. Cham: Springer Nature Switzerland. p. 170–188. Lecture Notes in Computer Science. ISBN 978-3-031-42591-2. [Accessed 5 February 2024]. FORTINO, Giancarlo and SAVAGLIO, Claudio, 2023. Integration of Digital Twins & Internet of Things. In: CRESPI, Noel, DROBOT, Adam T. and MINERVA, Roberto (eds.), The Digital Twin. Online. Cham: Springer International Publishing. p. 205–225. ISBN 978-3-031-21342-7. [Accessed 5 February 2024]. GAN, Wenyang, SU, Lixia and CHU, Zhenzhong, 2023. Trajectory Planning of Autonomous Underwater Vehicles Based on Gauss Pseudospectral Method. Sensors. Online. 2023. Vol. 23, no. 4, p. 2350. Available from: https://www.mdpi.com/1424-8220/23/4/2350 [Accessed 5 February 2024]. GANGULI, Ranjan, ADHIKARI, Sondipon, CHAKRABORTY, Souvik and GANGULI, Mrittika, 2023. Digital Twin: A Dynamic System and Computing Perspective. Online. CRC Press. Available from: https://books.google.com/books?hl=de&lr=&id=Lky2EAAAQBAJ&oi=fnd&pg=PP1&dq=%22Digital+Twins+Definition+Language%22&ots=dGbfHFXG-D&sig=e5tEEBibdXuU461RN6tsHa0I1TE [Accessed 5 February 2024]. GIL, Santiago, MIKKELSEN, Peter H., GOMES, Cláudio and LARSEN, Peter G., 2024. Survey on open‐source digital twin frameworks–A case study approach. Software: Practice and Experience. Online. 6 January 2024. P. spe.3305. DOI 10.1002/spe.3305. [Accessed 5 February 2024]. Abstract Digital twin (DT) technology has been a topic with academic and industrial coverage in recent years. DTs are intended to be a virtual high‐fidelity representation of a physical counterpart. Its complex nature requires several components to create and run a DT, and that is why many DT frameworks have been proposed in the literature. There are also many surveys of DTs, but none that is bottom‐up with concrete examples and focused on open‐source software. This survey analyzes 14 open‐source DT frameworks in 10 different dimensions, which are then categorized in six different groups according to their modeling and technological domain, to present the reader different options for creating and managing DT applications, and to understand potential combinations, uses, and limitations of the tools. It also presents a case study with five of the explored DT frameworks, describing the process on how the DT is set up and comparing their capabilities based on the services to be provided by the DT. Finally, it discusses advantages and limitations of the tools according to domain, requirements, and scope, relevant aspects regarding built‐in simulations and data analytics, theory‐to‐practice transition, and advantages/disadvantages of using open‐source software instead of commercial. Main limitations of the study due to its narrow niche, conclusions, and opportunities for future research regarding the potential room for improvement in terms of out‐of‐the‐box features and services for DTs, are also shown. GIULIANELLI, ANDREA, [no date]. STUDIO E SVILUPPO PROTOTIPALE DI UN MIDDLEWARE PER ECOSISTEMI INTEROPERABILI DI DIGITAL TWINS. . Online. Available from: https://amslaurea.unibo.it/24260/1/Tesi_Andrea_Giulianelli.pdf [Accessed 5 February 2024]. GUO, Xuepeng, LIU, Linyan, WANG, Zhexin, WANG, Huifen, DU, Xiaodong, SHI, Jiancheng and WANG, Yue, 2023. Research on Data Collection Methods for Assembly Performance of Array Antennas in Digital Twin Workshops. Processes. Online. 2023. Vol. 11, no. 9, p. 2711. Available from: https://www.mdpi.com/2227-9717/11/9/2711 [Accessed 5 February 2024]. HE, Yongchang, 2023. BLOCKCHAIN-BASED ACCESS AND USAGE CONTROL OF CLOUD-BASED DIGITAL TWINS. Online. PhD Thesis. University of Saskatchewan. Available from: https://harvest.usask.ca/bitstream/handle/10388/15272/HE-THESIS-2023.pdf?sequence=1 [Accessed 5 February 2024]. HELLINCKX, Peter, 2020. Intelligent Data Sharing in Digital Twins: Positioning Paper. In: Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 15th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2020). Online. Springer Nature. 2020. p. 282. Available from: https://books.google.com/books?hl=de&lr=&id=iAACEAAAQBAJ&oi=fnd&pg=PA282&dq=%22Digital+Twins+Definition+Language%22&ots=DCvfGW2TCW&sig=zMgu_adhVgvayR6eFPiqgFM96zA [Accessed 5 February 2024]. JACOBY, Michael and USLÄNDER, Thomas, 2020. Digital twin and internet of things—Current standards landscape. Applied Sciences. Online. 2020. Vol. 10, no. 18, p. 6519. Available from: https://www.mdpi.com/2076-3417/10/18/6519 [Accessed 5 February 2024]. JAKOBSEN, Aleksander Bogunovic and KINSTAD, Unni Johanna Blilie, 2022. Smart Building Data Collection and Ventilation System Energy Prediction. Online. Master’s Thesis. uis. Available from: https://uis.brage.unit.no/uis-xmlui/bitstream/handle/11250/3021857/no.uis:inspera:92613016:70415174.pdf?sequence=1 [Accessed 5 February 2024]. JEBENIANI, Hamza, ARAOUD, Zouhour, CANALE, Laurent and ZISSIS, Georges, 2023. Approach of “Digital Twins” applied to smart urban lighting: from concept to application. In: 2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18). Online. IEEE. 2023. p. 1–6. Available from: https://ieeexplore.ieee.org/abstract/document/10170326/ [Accessed 5 February 2024]. JOSHI, Suhas D., 2022. Digital Twin Solution Architecture. In: VOHRA, Manisha (ed.), Digital Twin Technology. Online. 1. Wiley. p. 47–76. ISBN 978-1-119-84220-0. [Accessed 5 February 2024]. KALOGERAS, GEORGIOS and ANAGNOSTOPOULOS, CHRISTOS, [no date]. Digital Twins From Smart Manufacturing to Smart Cities: A Survey. . Online. Available from: https://www.academia.edu/download/78189435/09576739.pdf [Accessed 5 February 2024]. KHAN, Naqi U., 2023. VIRTUAL TRAINING LAB (TLAB): ℡EPRESENCE EMPOWERED REMOTE LAB. . Online. 2023. Available from: https://dt.athabascau.ca/jspui/handle/10791/408 [Accessed 5 February 2024]. LEVSHUN, Dmitry, CHECHULIN, Andrey and KOTENKO, Igor, 2021. Design of Secure Microcontroller-Based Systems: Application to Mobile Robots for Perimeter Monitoring. Sensors. Online. 2021. Vol. 21, no. 24, p. 8451. Available from: https://www.mdpi.com/1424-8220/21/24/8451 [Accessed 5 February 2024]. LI, Minghao, WANG, Ruihang, ZHOU, Xin, ZHU, Zhaomeng, WEN, Yonggang and TAN, Rui, 2023. ChatTwin: Toward Automated Digital Twin Generation for Data Center via Large Language Models. In: Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. Online. Istanbul Turkey: ACM. 15 November 2023. p. 208–211. ISBN 9798400702303. DOI 10.1145/3600100.3623719. [Accessed 5 February 2024]. LIM, Wei Sean, 2021. Disaster Resilient Mesh Network With Data Synchronization Using Nervenet. Online. PhD Thesis. UTAR. Available from: http://eprints.utar.edu.my/4057 [Accessed 5 February 2024]. LUCAS, Jean-François, 2022. Imaginaires et traditions des jumeaux numériques urbains.. Online. 2022. Manucius. Available from: https://hal.science/hal-03816032/ [Accessed 5 February 2024]. MATEŠIĆ, Maja, 2021. Korištenje digitalnog dvojnika u sustavima Interneta stvari. Online. PhD Thesis. University of Zagreb. Faculty of Electrical Engineering and Computing. Available from: https://www.bib.irb.hr/1193626/download/1193626.Final_0036500471_55.pdf [Accessed 5 February 2024]. MATTILA, Joel, ALA-LAURINAHO, Riku, AUTIOSALO, Juuso, SALMINEN, Pauli and TAMMI, Kari, 2022. Using digital twin documents to control a smart factory: Simulation approach with ROS, gazebo, and Twinbase. Machines. Online. 2022. Vol. 10, no. 4, p. 225. Available from: https://www.mdpi.com/2075-1702/10/4/225 [Accessed 5 February 2024]. MYLONAS, Georgios, KALOGERAS, Athanasios, KALOGERAS, Georgios, ANAGNOSTOPOULOS, Christos, ALEXAKOS, Christos and MUÑOZ, Luis, 2021. Digital twins from smart manufacturing to smart cities: A survey. Ieee Access. Online. 2021. Vol. 9, p. 143222–143249. Available from: https://ieeexplore.ieee.org/abstract/document/9576739/ [Accessed 5 February 2024]. NEUBAUER, Michael, STEINLE, Lukas, REIFF, Colin, AJDINOVIC, Samed, KLINGEL, Lars, LECHLER, Armin and VERL, Alexander, 2023. Manufacturing Letters. . Online. 2023. Available from: https://www.researchgate.net/profile/Michael-Neubauer-4/publication/371268725_Architecture_for_Manufacturing-X_Bringing_Asset_Administration_Shell_Eclipse_Dataspace_Connector_and_OPC_UA_together/links/64802d30d702370600d853a6/Architecture-for-Manufacturing-X-Bringing-Asset-Administration-Shell-Eclipse-Dataspace-Connector-and-OPC-UA-together.pdf [Accessed 5 February 2024]. NEUBAUER, Michael, STEINLE, Lukas, REIFF, Colin, AJDINOVIĆ, Samed, KLINGEL, Lars, LECHLER, Armin and VERL, Alexander, 2023. Architecture for Manufacturing-X: Bringing Asset Administration Shell, Eclipse Dataspace Connector and OPC UA together. Manufacturing Letters. Online. 2023. Available from: https://www.sciencedirect.com/science/article/pii/S221384632300024X [Accessed 5 February 2024]. NI, Zhongjun, LIU, Yu, KARLSSON, Magnus and GONG, Shaofang, 2022. Enabling preventive conservation of historic buildings through cloud-based digital twins: a case study in the city theatre, norrköping. IEEE Access. Online. 2022. Vol. 10, p. 90924–90939. Available from: https://ieeexplore.ieee.org/abstract/document/9868776/ [Accessed 5 February 2024]. NÖLLE, Christoph and KANNISTO, Petri, 2023. Timeseries on IIoT Platforms: Requirements and Survey for Digital Twins in Process Industry.. Online. 28 September 2023. arXiv. arXiv:2310.03761. Available from: http://arxiv.org/abs/2310.03761 [Accessed 5 February 2024]. In the pursue for sustainability in process industry, digital twins necessitate the communication and storage of timeseries data about Industrial Internet of Things (IIoT). Regarding timeseries, this paper first presents a set of requirements specific to process industries. Then, it surveys how existing IIoT technologies meet the requirements. The technologies include the API specifications Asset Administration Shell (AAS), Digital Twin Definition Language (DTDL), NGSI-LD and Open Platform Communications Unified Architecture (OPC UA) as well as six commercial platforms. All the technologies leave significant gaps regarding the requirements, which means that tailor-made extensions are necessary. arXiv:2310.03761 [cs] SALVADOR-NAVARRO, ALEJANDRO A., 2023. Modelado de un gemelo digital para Internet de las Cosas. . Online. 2023. Available from: https://crea.ujaen.es/handle/10953.1/20475 [Accessed 5 February 2024]. SANTI, Mattia, 2024. Digital Twins: Accelerating Digital Transformation in the Real Estate Industry. In: BARBERIO, Maurizio, COLELLA, Micaela, FIGLIOLA, Angelo and BATTISTI, Alessandra (eds.), Architecture and Design for Industry 4.0. Online. Cham: Springer International Publishing. p. 673–697. Lecture Notes in Mechanical Engineering. ISBN 978-3-031-36921-6. [Accessed 5 February 2024]. SANTOS, Alan Ribeiro, 2021. Desenvolvimento do gêmeo digital de barragens. . Online. 2021. Available from: https://bdm.unb.br/handle/10483/33711 [Accessed 5 February 2024]. SCHNEIDER, Jan, 2021. Automatisches Auffinden von loT-Geräten in der loT-Plattform MBP. Online. Master’s Thesis. Available from: http://elib.uni-stuttgart.de/handle/11682/12000 [Accessed 5 February 2024]. SCHNEIDER, Tim, 2021. Verarbeitung komplexer IoT-Daten in der IoT-Plattform MBP. Online. B.S. thesis. Available from: http://elib.uni-stuttgart.de/handle/11682/11659 [Accessed 5 February 2024]. SHAREEF, Ahmed, TOMAŠ, Boris and VRČEK, Neven, 2023. Semantic Interoperability of Digital Twins in Smart Cities. In: Central European Conference on Information and Intelligent Systems. Online. Faculty of Organization and Informatics Varazdin. 2023. p. 481–487. Available from: https://www.researchgate.net/profile/Ahmed-Shareef-2/publication/375462383_Semantic_Interoperability_of_Digital_Twins_in_Smart_Cities/links/654b60b2b1398a779d712674/Semantic-Interoperability-of-Digital-Twins-in-Smart-Cities.pdf [Accessed 5 February 2024]. SIMMONS, Anj, 2022. A reliability measure for smart surveillance systems.. Online. 16 March 2022. arXiv. arXiv:2202.09339. Available from: http://arxiv.org/abs/2202.09339 [Accessed 5 February 2024]. We present a reliability measure for smart surveillance systems, taking into account the adversarial nature of intrusion. Our approach is based on percolation theory and is a generalisation of Hamedmoghadam et al.’s reliability measure. Specifically, our approach incorporates a customisable cost function to allow modelling a diverse range of situations, such as access restrictions, monitoring, and failures. We demonstrate our approach by applying it to a digital twin of a smart building. However, challenges remain in estimating and modelling the key parameters needed. arXiv:2202.09339 [cs, eess] SIMMONS, Anj and VASA, Rajesh, 2022. Signal Knowledge Graph.. Online. 24 June 2022. arXiv. arXiv:2206.12111. Available from: http://arxiv.org/abs/2206.12111 [Accessed 5 February 2024]. This paper presents an knowledge graph to assist in reasoning over signals for intelligence purposes. We highlight limitations of existing knowledge graphs and reasoning systems for this purpose, using inference of an attack using combined data from microphones, cameras and social media as an example. Rather than acting directly on the received signal, our approach considers attacker behaviour, signal emission, receiver characteristics, and how signals are summarised to support inferring the underlying cause of the signal. arXiv:2206.12111 [cs, eess] SLAMA, Dirk, 2023. AIoT Product/Solution Design. In: SLAMA, Dirk, RÜCKERT, Tanja, THRUN, Sebastian, HOMANN, Ulrich and LASI, Heiner (eds.), The Digital Playbook. Online. Cham: Springer International Publishing. p. 263–292. ISBN 978-3-030-88220-4. [Accessed 5 February 2024]. Abstract The idea of a more detailed design document may seem old fashioned to someone who is used to working in small, agile development teams. After all, the Agile manifesto itself values working software over comprehensive documentation and emphasizes the most efficient and effective method of conveying information to and within a development team is face-to-face conversation . However, in large-scale, multi-team, multisite projects, a certain amount of documentation is required to ensure that all teams and stakeholders are aligned and working in synch. Working across organizational boundaries will add to the need for more detailed documentation of requirements and design decisions. Finally, some types of procurement contracts will require detailed specifications and SLAs (see Sourcing_and_Procurement ). Given that an AIoT-enabled product or solution will contain different building blocks, such as AI, hardware, software, embedded components, etc., it is likely that it will face many of these constraints. Consequently, the Digital Playbook proposes to create and maintain a product/solution architecture that captures key requirements and design decisions in a consistent manner (Fig. 25.1). SLAMA, Dirk, RÜCKERT, Tanja, THRUN, Sebastian, HOMANN, Ulrich and LASI, Heiner, 2023. The Digital Playbook: A Practitioner’s Guide to Smart, Connected Products and Solutions with AIoT.. Online. 2023. Springer Nature. Available from: https://library.oapen.org/handle/20.500.12657/75363 [Accessed 5 February 2024]. STEINMETZ, Charles, SCHROEDER, Greyce N., SULAK, Adam, TUNA, Kaan, BINOTTO, Alecio, RETTBERG, Achim and PEREIRA, Carlos Eduardo, 2022. A methodology for creating semantic digital twin models supported by knowledge graphs. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). Online. IEEE. 2022. p. 1–7. Available from: https://ieeexplore.ieee.org/document/9921499/ [Accessed 5 February 2024]. VALDERAS, Pedro, 2023. Supporting the Implementation of Digital Twins for IoT-Enhanced BPs. In: NURCAN, Selmin, OPDAHL, Andreas L., MOURATIDIS, Haralambos and TSOHOU, Aggeliki (eds.), Research Challenges in Information Science: Information Science and the Connected World. Online. Cham: Springer Nature Switzerland. p. 222–238. Lecture Notes in Business Information Processing. ISBN 978-3-031-33079-7. [Accessed 5 February 2024]. VARGA, Liz, MCMILLAN, Lauren, HALLETT, Stephen, RUSSELL, Tom, SMITH, Luke, TRUCKELL, Ian, POSTNIKOV, Andrey, RODGER, Sunil, VIZCAINO, Noel and PERKINS, Bethan, 2021. Infrastructure Research Ontologies Final Report. . Online. 2021. Available from: https://dafni.ac.uk/wp-content/uploads/2021/05/IRO-final-report-31-03-2021.pdf [Accessed 5 February 2024]. VOLZ, Friedrich, SUTSCHET, Gerhard, STOJANOVIC, Ljiljana and USLÄNDER, Thomas, 2023. On the role of digital twins in data spaces. Sensors. Online. 2023. Vol. 23, no. 17, p. 7601. Available from: https://www.mdpi.com/1424-8220/23/17/7601 [Accessed 5 February 2024]. WONGCHOMPHU, Phrimphrai and BEOKHAIMOOK, Chutima, 2023. SCA Advice System: Ontology Framework for a Computer Curricula Advice System Based on Student Behavior. . Online. 2023. Available from: https://www.jicce.org/journal/view.html?pn=current_issue&uid=1243&vmd=Full [Accessed 5 February 2024]. XING, Yuzhen, 2023. Cyber security digital twin simulations for wireless networks. Online. PhD Thesis. University of British Columbia. Available from: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0431523 [Accessed 5 February 2024]. YANAMALA, Akhileswar Reddy, HARODE, Ashit and THABET, Walid, 2023. A proposed systems-centric ontology for a graph-based digital twin. In: EC3 Conference 2023. Online. European Council on Computing in Construction. 2023. p. 0–0. Available from: https://ec-3.org/publications/conference/paper/?id=EC32023_229 [Accessed 5 February 2024]. ZAIDI, Yaseen, [no date]. Digital Thread–the Missing Link. . Online. Available from: https://uwe-repository.worktribe.com/index.php/preview/10274030/Digital%20Thread%20the%20Missing%20Link%20Yaseen%20Zaidi.pdf [Accessed 5 February 2024]. ZHIDCHENKO, Victor, STARTCEV, Egor, KORTELAINEN, Juha, ZEB, Akhtar, TORVIKOSKI, Leo, TORKABADI, Saeid and HANDROOS, Heikki, 2023. A microservices-based architecture for data and software management of heavy equipment digital twins. In: 2023 IEEE 21st International Conference on Industrial Informatics (INDIN). Online. IEEE. 2023. p. 1–8. Available from: https://ieeexplore.ieee.org/abstract/document/10218021/ [Accessed 5 February 2024]. ZICHI, Alessandro, COVIELLO, Giovanni and BELLINI, MRICS Stefano, [no date]. Supervisor: Author. . Online. Available from: https://bimaplus.org/wp-content/uploads/2020/10/2020-GiovanniCoviello-Dissertation.pdf [Accessed 5 February 2024]. ZIYATDINOVA, Guzel, ANTONOVA, Tatyana and DAVLETSHIN, Rustam, 2023. Voltammetric Sensor Based on the Poly (p-aminobenzoic Acid) for the Simultaneous Quantification of Aromatic Aldehydes as Markers of Cognac and Brandy Quality. Sensors. Online. 2023. Vol. 23, no. 4, p. 2348. Available from: https://www.mdpi.com/1424-8220/23/4/2348 [Accessed 5 February 2024]. ВОРОБЬЕВ, Андрей Владимирович, 2021. Концепция информационного пакетного взаимодействия в многоуровневой системе цифровых двойников. Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика. Online. 2021. Vol. 21, no. 4, p. 532–543. Available from: https://cyberleninka.ru/article/n/kontseptsiya-informatsionnogo-paketnogo-vzaimodeystviya-v-mnogourovnevoy-sisteme-tsifrovyh-dvoynikov [Accessed 5 February 2024]. ЛАЗОРИН, Д. С., ПРАВИКОВ, Д. И. and ЩЕРБАКОВ, А. Ю., [no date]. ВЕСТНИК СОВРЕМЕННЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ. ВЕСТНИК СОВРЕМЕННЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ Учредители: Щербаков Андрей Юрьевич. Online. No. 11, p. 48–55. Available from: https://elibrary.ru/item.asp?id=49001212 [Accessed 5 February 2024]. ЛАЗОРИН, Д. С., ПРАВИКОВ, Д. И. and ЩЕРБАКОВ, А. Ю., 2022. ЦИФРОВЫЕ ТЕХНОЛОГИИ В ПРОМЫШЛЕННОСТИ. ВЕСТНИК СОВРЕМЕННЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ. Online. 2022. Available from: https://securedt.ru/fullwork.pdf [Accessed 5 February 2024]. ЛОБОДА, Петро Петрович, 2023. Методи та програмні засоби обробки даних цифрового двійника конфайнменту чорнобильської атомної електростанції. . Online. 2023. Available from: https://ela.kpi.ua/bitstream/123456789/63995/1/Loboda_dys.pdf [Accessed 5 February 2024]. СВИЩЁВА, Ирина Витальевна and ШАПОВАЛОВА, Эвелина Вадимовна, [no date]. Цифровые двойники: как технологии искусственного интеллекта изменят нашу жизнь. ББК 1 Н 34. Online. P. 1701. Available from: https://na-journal.ru/pdf/nauchnyi_aspekt_4-2023_t14_web.pdf#page=41 [Accessed 5 February 2024]. СУЛЕМА, Євгенія Станіславівна, 2020. Методи, моделі та засоби обробки мультимодальних даних цифрових двійників досліджуваних об’єктів. . Online. 2020. Available from: https://ela.kpi.ua/bitstream/123456789/37251/1/Sulema_diss.pdf [Accessed 5 February 2024]. 이주홍, 2022. 상호운용적 스마트 공장을 위한 Digital Twins Definition Language 기반 디지털 트윈 모델 개발. Online. PhD Thesis. 한양대학교. Available from: https://repository.hanyang.ac.kr/handle/20.500.11754/174488 [Accessed 5 February 2024].